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Abstract. In 3 dimensions, the Ising model is in the same universality class as φ4-theory, whose mas-
sive 3-loop tetrahedral diagram, CTet, was of an unknown analytical nature. In contrast, all single-scale
4-dimensional tetrahedra were reduced, in hep-th/9803091, to special values of exponentially conver-
gent polylogarithms. Combining dispersion relations with the integer-relation finder PSLQ, we find that
CTet/25/2 = Cl2(4α) − Cl2(2α), with Cl2(θ) :=

∑
n>0 sin(nθ)/n2 and α := arcsin 1

3 . This empirical rela-
tion has been checked at 1,000-digit precision and readily yields 50,000 digits of CTet, after transformation
to an exponentially convergent sum, akin to those studied in math.CA/9803067. It appears that this 3-
dimensional result entails a polylogarithmic ladder beginning with the classical formula for π/

√
2, in the

manner that 4-dimensional results build on that for π/
√

3.

1 Introduction

In 3 dimensions, the universality class of the Ising model
includes φ4 theory, which entails at the 3-loop level a tetra-
hedral Feynman diagram, corresponding to the symmet-
rical 9-dimensional integral [1]

CTet :=
1
π6

∫
d3k1d

3k2d
3k3∆(k1)∆(k2)

∆(k3)∆(k1 − k2)∆(k2 − k3)∆(k3 − k1) (1)

with ∆(k) := 1/(|k|2 + 1) as the unit-mass propagator.
A numerical value, CTet ≈ 0.1739006, was obtained in [2]
and checked in [1,3]. We shall show that the dispersive
methods of [4,5] enable a reduction of CTet, as for any
assignment of masses, to single integrals of logarithms.
Then we shall describe how the lattice algorithm PSLQ
[6] achieved a very simple reduction of CTet to a Clausen
integral, which gives an exponentially convergent sum that
reveals a new feature of the distinctive mapping [7] of di-
agrams [5,8–12] to numbers [13–16] provided by quantum
field theory.

2 Dispersive integral

Let C(a, b) be the tetrahedron with non-adjacent lines car-
rying masses a and b, while the other 4 lines retain unit
mass. Then a long dispersive calculation produces a short
result:

C(a, b) = −16
b

∫ ∞

2

dw

(w + a)D(w, b)
arctanh

(
N(w, b)
D(w, b)

)
(2)

http://physics.open.ac.uk/˜dbroadhu

where the denominator function

D(w, b) := w
√

w2 + b2 − 4 (3)

is regular at the 2-particle threshold, w = 2, provided that
b > 0, and

N(w, b) = w2 − 2(2 + b) for w ∈ [2, 2 + b] (4)
N(w, b) = wb for w ∈ [2 + b, ∞] (5)

specify a numerator that is continuous in value, though
not in derivative, at the 3-particle threshold, w = 2 + b.
The origins of (2–5) will be outlined, neglecting factors of
2 and π.

1. Let I(k, b) be the 2-point function obtained by cutting
the tetrahedron at the line with mass a, so that

C(a, b) ∼
∫

d3k
|k|2 + a2 I(k, b) (6)

with the 2-point function given by a dispersion relation
of the form

I(k, b) ∼
∫ ∞

2

w dw

w2 + |k|2 σ(w, b) (7)

where σ is the spectral density of I, considered in
2+1 spacetime dimensions. We perform this anti-Wick
rotation, away from the 3 spatial dimensions of con-
densed matter, in order to exploit the Cutkosky rules
of Minkowski-space quantum field theory, as in [4]. An
interchange of order of integration in (6,7) gives

C(a, b) ∼
∫ ∞

2

w dw

w + a
σ(w, b) (8)

which explains the simple dependence on a of the in-
tegrand in (2).
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2. The spectral density

σ(w, b) = θ(w − 2)σ2(w, b)
+θ(w − 2 − b)σ3(w, b) (9)

receives contributions from intermediate states with 2
and 3 particles. In the first case, σ2(w, b) ∼ <F (w +
i0, b)/w entails a 1-loop form factor, F . This may also
be calculated dispersively, from its imaginary part

=F (w + i0, b) ∼ 1
w

∫ π

0

dφ

2k2(1 − cos φ) + b2

=
π

wb
√

w2 + b2 − 4
(10)

where k :=
√

(w/2)2 − 1 and φ are the centre-of-mass
2-momentum and scattering angle, in the elastic scat-
tering of unit-mass particles, by exchange of a particle
of mass b, in 2 + 1 spacetime dimensions. This is the
origin of the square root in (3).

3. It is now straightforward to calculate

wbσ2(w, b) ∼ <
∫ ∞

2

x dx

x2 − w2 + i0
1

D(x, b)
(11)

and obtain logarithms from the real part of the form
factor. Maple produced 3 arctanh functions, which were
combined, by hand, to give the numerator (4).

4. The 3-particle intermediate state yields the Dalitz-plot
integral

σ3(w, b) ∼ <
∫ w(w−2)

b(2+b)

ds

s

∫
dt

t

1√
J(s, t, w2, b2)

=
∫ w(w−2)

b(2+b)

ds

s

π√−J(s, 0, w2, b2)
(12)

where s and t are the denominators of the propagators
of the two particles that are still off-shell and the t
integration is over the range in which the Jacobian

J(s, t, u, v) := −(s t − u v)(s + t + 4 − u − v)
−(s − t)2 (13)

is positive. Maple produced 2 arctanh functions, to be
added to the 3 from σ2. Manual combination of these
5 logs produced the amazingly simple numerator (5).

This method is clearly generalizable to give a single inte-
gral of logs in any mass case.

3 Superconvergence and KLN cancellations

The factor −16/b in (2) looks alarming, at first sight. The
integral is manifestly finite as a → 0. Field theory proves
that C(a, b) = C(b, a), notwithstanding the very different
ways that the masses a and b enter the integral. Hence
C(a, b) is finite as b → 0, despite the factor of 1/b. Already
we see that potentially linear infra-red divergences have

been cancelled, by combining 2-particle and 3-particle in-
termediate states in (5). This parallels the 4-dimensional
cancellation of logarithmic divergences, from virtual and
real soft photons, by the Kinoshita-Lee-Nauenberg mech-
anism [17]. However, it is still not safe to take the limit
b → 0, blithely, since the contributions from w > 2+ b are
manifestly negative, and have a 1/(w − 2) singularity as
b → 0.

The key to handling this tricky limit is the supercon-
vergence relation

0 =
∫ ∞

2

dw

D(w, b)
arctanh

(
N(w, b)
D(w, b)

)
(14)

which ensures that lima→∞ aC(a, b) = 0. Thus one may
make the replacement

1
w + a

→ 1
w + a

− 1
2 + a

= − w − 2
(w + a)(2 + a)

(15)

in (2). Then the factor w − 2 suppresses the singularity
at threshold in the limit b → 0, giving the elementary
integral

C(a, 0) =
16

2 + a

∫ ∞

2

dw

w(w + a)(w + 2)

=
16 log(1 + a/2) − 8a log 2

4a − a3 (16)

in agreement with a more general case, given in [3]. The
values

C(0, 0) = 2 − log 4 (17)

C(1, 0) =
8
3

log
9
8

(18)

C(2, 0) = log 2 − 1
2

(19)

C(4, 0) =
1
3

log
4
3

(20)

C(6, 6) =
1
12

log 2 (21)

entail only log 2 and log 3. This observation prompted the
next step.

4 Dilogarithms at b = 2

By giving numerical evaluations to the lattice algorithm
PSLQ, it was discovered that C(a, 2) evaluates to dilogs
with simple rational arguments, for a ∈ {1, 2, 4, 6}, namely

C(1, 2) = π2 + 4Li2

(
1
16

)
− 8Li2

(
1
6

)

−16Li2

(
1
4

)
− 2 log2 3 − 4 log2 2 (22)

C(2, 2) =
π2

12
− Li2

(
1
4

)
− log2 2 (23)

C(4, 2) =
3
8
Li2

(
1
4

)
+

1
8

log2 3 − 3
4

log 2 log
3
2

(24)

C(6, 2) =
2
9
Li2

(
1
4

)
− 1

9
Li
(

1
16

)
− 1

18
log2 2 (25)
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which indicated a dilogarithmic dependence of C(a, 2) on
a. Combining the superconvergence relation with the sim-
plicity of D(w, 2) = w2, a lengthy expression was proven
by computer algebra, and then simplified by hand to give

1
4
a2C(a, 2) = 3Li2(a/(a + 2)) − 2Li2(a/(2a + 4))

+Li2(2a/(a − 2)) − Li2(a/(a − 2))

+2Li2(−a/4) + log2(1 + a/2)
− log(1 − a2/4) log 2 (26)

which shows that C(0, 2) = log 2 − 1
2 , in agreement with

(19). Thanks to advice from Arttu Rajantie, it, became
clear that the 5 dilogs could be simplified to give 2, using
transformations of Li2(x) := − ∫ x

0 (dy/y) log(1 − y). The
most compact formula is

1
4
a2C(a, 2) = Li2((a − 2)/(a + 2)) − 2Li2(−2/(a + 2))

− 1
12

π2 (27)

5 PSLQ and the symmetric tetrahedron

The previous results suggested the hypothesis that the
totally symmetric tetrahedron, CTet := C(1, 1), is a dilog-
arithm. With the help of PSLQ, it was eventually reduced
to a Clausen integral of startling simplicity:

C(1, 1)
25/2 = −

∫ 4α

2α

dθ log
(

2 sin
1
2
θ

)
(28)

with α := arcsin 1
3 . A proof appears to be rather difficult,

though (28) has been confirmed numerically, at 1,000-
digit precision. The discovery route was typical of work
with PSLQ. Splitting C(1, 1) into contributions below and
above the 3-particle threshold, one finds that the latter in-
volve terms of the form

√
2Cl2(jα + kπ/6), with

Cl2(θ) := =Li2(exp(iθ)) =
∑
n>0

sin(nθ)
n2 (29)

and integer values of j and k. There appeared to be little
prospect of reducing all terms to this set of constants, by
analytical methods alone. Yet PSLQ found that the total
is so reducible and also found many relations between such
Clausen values and the constants {π log 2, π log 3, α log 2,
α log 3}. As so often remarked in field theory, the whole:

C(1, 1)
25/2 = Cl2(4α) − Cl2(2α) (30)

turned out to be far simpler than its parts. As a final
bonus, this was transformed, again with the aid of PSLQ,
to the exponentially convergent sum

C(1, 1) =
∞∑

n=0

(−1/2)3n

n + 1
2

(
1

n + 1
2

− 3 log 2 −
n∑

m=1

3
m

)

(31)

formed from terms found in integer relations with
√

2Cl2
(jα + kπ/6). This last result enables rapid computation
in a single do-loop. The first 50 digits of

CTet := C(1, 1) =
0.17390061066200274272650601711566596761380833829869 (32)

result in a trice, with 50,000 digits taking only 40 minutes
on a 233 MHz Pentium. The first 1,000 digits agree with
numerical quadrature of dispersive integrals, generously
undertaken by Greg Fee, at CECM.

After this work was completed, Arttu Rajantie drew
attention to an alternative representation of massive 3-
dimensional tetrahedra [3], obtained by the method of dif-
ferential equations [18]. In the totally symmetric case this
gives [3]

C(1, 1)
25/2 =

∫ 1

0

dx√
3 − x2

(
log

3
4

+ log
3 + x

2 + x

− x2

4 − x2 log
4

2 + x
+

x

2 + x
log

3 + x

3

)
(33)

which appears to be no easier to reduce to (30) than the
dispersive integral (2).

6 Conclusions

Thus PSLQ has shown that I was off target when sug-
gesting at the recent Rheinsberg workshop that a super-
renormalizable theory [1,3] might be less interesting, math-
ematically, than QCD [5]. In fact, the Ising tetrahedron is
as intriguing as those in QCD.

One now sees that the symmetric 3-dimensional tetra-
hedron is given by (31) as an exponentially convergent
sum that sits close to the classical formula [19]

π√
2

=
∑
n≥0

(−1/2)n + (−1/2)3n+2

n + 1
2

(34)

This association resonates strongly with the recent reduc-
tion [5] of a 4-dimensional tetrahedron, in the 3-loop QCD
corrections to the electro-weak rho-parameter [20,21], to a
sum of squares of two distinguished dilogarithms, namely
ζ(2) and Cl2(π/3). The latter was first encountered in 1-
loop massless 3-point functions [22] and then in the pio-
neering work of van der Bij and Veltman [23] on 2-loop
massive diagrams. In the massive case it appears in asso-
ciation with

π√
3

=
∑
n≥0

(−1/3)n

n + 1
2

(35)

It remains to be seen whether the ‘magic’ connection proven
in [24], between massless and massive instances of Cl2(π/3),
is generalizable to the quadrilogarithms found in [5] or to
the dilogarithm (30) found here.

In conclusion: 3-loop single-scale vacuum diagrams in
4 dimensions [5] evaluate to quadrilogarithms of the sixth
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root of unit, exp(iπ/3) = (1 + i
√

3)/2, while in 3 dimen-
sions we have now encountered dilogarithms of exp(iα) =
(
√

8 + i)/3. In both cases, there are remarkable trans-
formations to exponentially convergent sums. In the 4-
dimensional case, these entail polylogarithmic ladders,
akin to those in [15], beginning with (35); in 3 dimensions
(34) appears to provide the lowest rung. In both cases, the
results are of a simplicity, scarcely to be expected from the
method, that was revealed by PSLQ [6].
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